Tersine mühendislik, genellikle benzer bir şey üretmek amacıyla, imalatında yer alan kavramları keşfetmek için bir ürün veya cihazı sondan başa inceleme süreci olarak tanımlanıyor. Bu hepimizin hemfikir olacağı gibi yeni bir kavram değil. Tersine mühendisliğin öncelikle savaş zamanlarında rakiplerin teknolojik sırlarını çözmek için kullanıldığı biliniyor.
Günümüzde tersine mühendislik, tipik bir tasarım iş akışının ters yönünü ele alarak fiziksel bir nesnenin geometrisini dijital bir 3B modele dönüştürme süreciyle daha yaygın bir şekilde ilişkilendiriliyor. Ancak bu “modern” türden tersine mühendislik ancak 3D tarama gibi nispeten yeni teknolojilerle mümkündür.

3B taramadan önce geleneksel tersine mühendislik son derece zaman alıcı ve geleneksel görevler içeriyordu. Bu durum günümüz pazarındaki parça ve ürünlerin yüksek kalite standartları ve maliyetler göz önüne alındığında kapsam ciddi şekilde sınırlanıyordu.
3D tarama, en karmaşık parçaların bile geometrisini olağanüstü hızlı ve hassas bir şekilde verimli bir şekilde yakalayabiliyor. Bu teknoloji yeniden incelenmesi gereken durumlarda tersine mühendislik kullanımına olanak sağlıyor.
3D tarama ve tersine mühendislik için ana uygulamalar
3D tarama ile tersine mühendislik, ürün geliştirme ve üretim için birçok olasılık sunar. Genel olarak, tersine mühendisliğin farklı kullanımları üç ana uygulamaya ayrılabilir. Bunlar parçaları çoğaltmak, mevcut parçaların varyasyonlarını yaratmak veya mevcut bir ortam veya nesneye dayalı olarak tamamen yeni parçalar geliştirmektir.
1. Parçaları yeniden oluşturun ve çoğaltın
3D tarayıcıların en popüler kullanımlarından biri, orijinal tedarikçiden temin edilemeyen veya uygun belgelere sahip olmayan hasarlı veya yıpranmış parçaları yeniden oluşturmaktır. Bu, eski makinelerle veya eski araçlarla çalışırken yaygın bir sorundur.
Ancak, iyi bir 3B tarayıcı ve uygun yazılımla bu basit bir görev haline gelebilir. Örneğin Katsuya Tanabiki, eski bir motosiklet kaskının kalkan çentiğini tersine mühendislikle onardı. Miğferde iki kalkan çentiği vardı, ancak biri kırılmıştı ve yeni bir çentik elde etmek çok zordu. Bu küçük parça, Sabit Modda bir EinScan Pro 2X ile 3B tarandı ve daha sonra 3B yazdırıldı.

Ancak parçanın gerçek üretimi her zaman nihai hedef değildir. Diğerlerinin yanı sıra havacılık ve uzay ve otomotiv endüstrileri, bileşenleri dijitalleştirmek ve eski parçaların dijital envanterlerini oluşturmak için tercihen tersine mühendisliği kullanıyor. Bu sayısallaştırılmış bileşenler “dijital ikizler” olarak biliniyor.
Bu parçaların karmaşıklığı ve karşılamaları gereken katı boyutsal gereksinimler 3D taramayı vazgeçilmez kılıyor. Örneğin, Print3DD tarafından ters mühendisliği yapılmış bu küçük türbini ele alalım. Kanatlarının ayırt edici geometrisini, 3D tarama olmadan doğru bir şekilde yeniden oluşturmak imkansız olacaktır.
2. Mevcut parçaları geliştirin
Tersine mühendisliğin bir başka amacı sayısallaştırılmış parçaları yalnızca yeniden üretmek yerine yeni ve geliştirilmiş değişkenler oluşturmak için kullanmaktır. Bu yöntem, sıfırdan parça oluşturma süresini ve maliyetlerini önemli ölçüde azaltabilir. Bununla birlikte ayrıca daha büyük düzeneklere ait bileşenler için mükemmel bir uyum sağlar.

Fiziksel nesnelerin yeni versiyonlarını oluşturmak için kullanılan tersine mühendisliğin bir başka güzel örneği mobilya parçalarının özelleştirilmesidir. Voxel 3D tarafından 3D tarama ve CNC ahşap oymacılığı kullanılan bu projede tek bir mobilyanın oyma süslemeleri 3D tarama ile sayısallaştırılarak farklı parçalara entegre edilmiştir.
3. Tamamen yeni parçalar oluşturun
3D tarama tamamen yeni parçalar oluşturmak için dijitalleştirilmiş parçaları referans olarak kullanan bir başka tersine mühendislik uygulamasını etkinleştirdi. Bu prosedür genellikle, çok karmaşık veya düzensiz bir arayüze sahip mevcut bir parça üzerinde sıkı bir uyum gerektiğinde kullanılır.
Bunu göstermek için, Fuller Moto otomotiv özelleştirme mağazasından bir kullanım örneğine bakalım. Bryan Fuller ve ekibi, EinScan Pro 2X Plus’ı kullanarak 1967 model bir Lincoln Continental’in ayak boşluğunun tamamını 3D olarak taradı. Sayısallaştırılmış bölge, yeni bir tekme paneli tasarlamak için referans olarak kullanıldı. Ayak boşluğunun hassas 3D modeli, yeni parçanın özelleştirilmiş araca kusursuz bir şekilde uymasını mümkün kıldı.

Bu özel teknik aynı zamanda tıp uzmanları tarafından da yaygın olarak uygulanıyor. Çünkü vücut parçaları benzersizdir ve geleneksel yöntemlerle doğru bir şekilde kopyalanması zordur. Bu noktada 3D taramanın insan parçalarını ve yüzeyleri sayısallaştırmada etkili bir araç olduğu bir kez daha kanıtlanmıştır.
Örneğin kulak kalıpları, sesi işitme cihazlarından kulak kanalına iletmeye yardımcı olan hastaya özel parçalardır. Yeni kulak kalıplarının bakımı veya sıfırdan oluşturulması birkaç hafta sürebilir. Bu süre zarfında hastalar bunlar olmadan işitme sorunları yaşarlar.
Ancak, 3D tarama ve 3D baskı ile tersine mühendislik yöntemleri sayesinde, Toronto’daki Hearing Beyond Odyoloji Kliniği sadece bir günde geçici kulak kalıpları üretebilir. Geçici aksesuar, hastaların kulak kalıplarının başka tesislerde üretilmesini veya bakımını yapmasını beklerken işitme duyularını korumalarına olanak tanır.

İyi bir tersine mühendislik nasıl mümkün kılınıyor?
Bahsettiğimiz örnekler tersine mühendislikte 3B taramanın merkezi rolünü açıkça gösteriyor. 3B taramayla yakalanan verilerin etkinliğinin ve doğruluğunun, başarılı bir tersine mühendislik süreci için büyük önem taşıyor. Bununla birlikte, tersine mühendislikte iyi sonuçlar elde etmek için yakalanan verilerin kalitesi çok önemlidir. 3D tarama cihazının seçimi, yetenekleri ve işlevleri, tüm sürecin başarısında merkezi bir rol oynar. Ancak veriyi işlemek ve 3B modellerle çalışmak için kullanılan yazılım araçları da tersine mühendislikte istenen sonuçlara ulaşmak için gerekiyor.
Tersine mühendislik, geçmişte bir zamanlar sahip olduğu askeri uygulamalardan çok yol kat etti. 3B tarama teknolojileri, tersine mühendislik için endüstriyel uygulama yelpazesini genişleterek hem işletmelere hem de tüketicilere fayda sağladı.
Genellikle gözden kaçan veya hafife alınan yazılımlar, tersine mühendisliğin sonraki aşamalarında kullanılan yazılımlar da büyük önem taşımaktadır. İş için özel yerleşik araçlar, iyi yürütülen bir tersine mühendislik sürecinde büyük bir fark yaratabilir.
Leave a Reply